반응형 그래프3 [딥러닝 with Python] GIN 알아보기(Graph Isomorphism Network) 이번에는 기존에 알아본 GNN개념과 더불어 GIN이라는 방법론에 대해서 알아보고자 합니다.[개념정리] 그래프 신경망(Graph Neural Network / GNN) (1) [개념정리] 그래프 신경망(Graph Neural Network / GNN) (1)1. 그래프 신경망이란? (Graph Neural Network / GNN)- 그래프 신경망, 즉 GNN은 그래프 구조의 데이터를 처리하고 분석하기 위한 딥러닝 모델을 말합니다.- 이는, 주로 노드, 엣지 그리고 전체 그래프에 대jaylala.tistory.com[개념정리] 그래프 신경망(Graph Neural Network / GNN) (2) [개념정리] 그래프 신경망(Graph Neural Network / GNN) (2)[본 포스팅은 다음 포스팅의.. 2025. 2. 27. [개념정리] Graph SAGE란? Graph SAmple & aggreGatE) GraphSAGE(Graph Sample and aggreGatE)는 "Inductive Representation Learning on Large Graphs"(NIPS 17)라는 논문에 소개된 모델로, GNN의 한 종류이며, 대규모 그래프 데이터에서 효율적으로 노드의 임베딩을 학습하기 위해 설계된 방법입니다. 특히, GraphSAGE는 이웃 노드의 정보를 샘플링(Sample)하고 집계(Aggregate)하는 방식을 통해 그래프에서 노드의 표현을 학습하고, 이를 통해 매우 큰 데이터의 그래프에서 메모리와 계산 자원을 절약하며 학습할 수 있게 해주는 방식입니다. Graph SAGE의 주요 개념과 특징에 대해서 간략히 알아보겠습니다. 1. GraphSAGE의 주요 개념과 특징1) Sample neighb.. 2024. 9. 29. [개념정리] Graph Convolutional Network란? GCN이란? [해당 포스팅은 "[기초개념] Graph Convolutional Network(GCN)"(GIST 발표자료) 를 참조했습니다. 링크: https://www.slideshare.net/slideshow/graph-convolutional-network-gcn/144158888#6 ]1. 그래프 기본개념 - 그래프는 일반적으로 G = (V, E)로 정의되며 여기서 V는 노드의 집합을, E는 엣지의 집합을 의미합니다. * 노드(Node) : 각각의 노드는 속성 벡터(feature)를 가지게 됩니다. 예를 들어, SNS 그래프에서 한 노드는 사용자에 해당하며 사용자의 속성(나이, 관심사 등)이 포함된 벡터가 그 노드의 특징 벡터입니다. * 엣지(Edge) : 엣지는 노드 간의 연결을 나타내며, 엣지가 존재.. 2024. 9. 28. 이전 1 다음 반응형