반응형 시계열 회귀1 [딥러닝 with Python] LSTM을 활용한 회귀 분석 이번 포스팅은 지난번에 알아본 LSTM의 개념을 바탕으로 실습을 해보는 내용입니다. 1. LSTM을 활용한 회귀 분석- LSTM은 RNN의 한 종류로, 시계열 데이터 분석에 효과적인 구조를 가지고 있습니다. LSTM은 시간 의존성이 긴 데이터에서도 중요한 패턴을 학습할 수 있도록 설계되었으며, 회귀 분석에서는 연속적인 값 예측, 주가 분석, 온도 예측 등 다양한 연속형 데이터 문제에 활용될 수 있습니다. - LSTM을 시계열 데이터의 회귀 분석에 활용 시 다음과 같은 장점들이 있습니다. 1) 시간 의존성 학습 : 시계열 데이터에서 이전 시점의 정보를 사용해 현재 시점의 결과를 예측할 수 있습니다. 2) 장기 의존성 해결 : LSTM의 게이트 구조(입력, 망각, 출력 게이트)는 RNN의 단점인 장기 의존성.. 2024. 12. 3. 이전 1 다음 반응형