반응형 aggregating1 [머신러닝 with Python] 앙상블(Ensemble) 학습 (2) / 배깅(Bagging) / 랜덤포레스트(Random Forest) / 타이타닉(titanic) 데이터 활용 지난번 포스팅에서는 앙상블 기법의 기본인 보팅(Voting)에 대해서 알아보았습니다. 이번에는 앙상블 기법 중 배깅(Bagging)에 대해서 알아보겠으며, 배깅의 대표적인 모델인 랜덤포레스트에 대해서 알아보겠습니다. 1. 배깅(Bagging)이란? - 배깅(Bagging)이란, Bootstrap Aggregating의 약어로 말 그대로 a) 부트스트랩(Bootstrap) 방법으로 원본 데이터에서 랜덤성과 중복을 허용하여 학습 샘플을 추출하고 b) 정해진 모델로 각각의 샘플에 대해서 학습한 결과를 Aggregating(종합, 집합)해서 최적의 결과를 도출하는 방법을 말합니다. - 이를 정리해서 Bagging 의 작동방식에 대해서 알아보면 아래와 같습니다. 1) 데이터의 부분 집합(Bootstrap 샘플)을.. 2023. 9. 11. 이전 1 다음 반응형