반응형 gradient penalty1 [딥러닝 with Python] (WGAN) 와서스테인 GAN - 그레이디언트 페널티(WGAN-GP) [본 포스팅은 만들면서 배우는 생성 AI 2탄 을 참조했습니다] DC GAN은 GAN모델을 Convolution 신경망을 활용해 학습 능력과 그 성능을 향상시켰지만, 학습을 시키는것이 매우 어렵다는 단점이 있었습니다. 이를 해결하기 위해 제안된 것인 와서스테인 GAN 입니다. 와서스테인 GAN은 안정적인 GAN 훈련을 위해 와서스테인 손실함수를 제안하는 GAN 모델입니다. 이 와서스테인 손실함수를 사용하면 기존에 사용하던 손실함수인 이진 크로스 엔트로피 손실보다 GAN 모델의 학습결과가 더 안정적으로 수렴할 수 있다고 합니다. - 기존의 이진 크로스 엔트로피 손실(Binaray Cross Entropy Loss)는 아래와 같습니다. * y는 실제 레이블 (0 또는 1) * y_hat은 모델의 .. 2024. 6. 3. 이전 1 다음 반응형