반응형 imblearn1 [머신러닝 with Python] 불균형 데이터 처리(4) : ADASYN 활용 이번에 알아볼 불균형 데이터 처리 방법은 ADASYN입니다. 1. ADASYN이란?- ADASYN은 Adaptive Synthetic Sampling Approach for Imbalanced Learning 의 약자로, 불균형한 데이터셋에서 소수 클래스의 데이터를 보강하여 학습 성능을 개선하기 위해 사용되는 오버샘플링 기법을 말합니다. - ADASYN의 주요 특징과 동작 방식은 다음과 같습니다.1) 소수 클래스 샘플의 밀도 계산 * 먼저 각 소수 샘플 XI에 대해, 최당 샘플의 k-nearest neighbor 중 대다수 클래스 샘플의 비율을 측정합니다. 이를 통해 각 샘플이 결정 경계 근처에 위치하는지를 파악합니다. 2) 가중치 분포 계산 * 각 소수 클래스 샘플의 ri 비율을 기반으로, 소수 클래.. 2024. 11. 26. 이전 1 다음 반응형