반응형 umap1 [머신러닝 with Python] UMAP과 t-SNE 비교 (차원 축소 비교 및 구현) 고차원 데이터를 시각화하고 이해하는 것은 머신러닝 및 데이터 분석에서 중요한 일입니다. 선형 차원 축소 기법인 PCA는 굉장히 유명하지만, 데이터의 복잡한 비선형을 선형으로 가정하여 축소한다는 점에서 정보의 손실이 많은데요.[머신러닝 with 파이썬] PCA / 주성분 분석 / 차원축소 /iris 데이터 활용 [머신러닝 with 파이썬] PCA / 주성분 분석 / 차원축소 /iris 데이터 활용이번에 알아볼 것은 차원축소 알고리즘의 대표적인 PCA(주성분 분석)에 대해서 알아보겠습니다. Tabular type의 데이터에서 차원을 축소한다는 것은 곧, 변수의 개수(또는 피처의 개수)를 줄인다jaylala.tistory.com 대표적인 비선형 차원 축소 기법으로는 UMAP(Unifor Manifold A.. 2025. 3. 11. 이전 1 다음 반응형