반응형 GAN8 [딥러닝 with Python] (WGAN) 와서스테인 GAN - 그레이디언트 페널티(WGAN-GP) [본 포스팅은 만들면서 배우는 생성 AI 2탄 을 참조했습니다] DC GAN은 GAN모델을 Convolution 신경망을 활용해 학습 능력과 그 성능을 향상시켰지만, 학습을 시키는것이 매우 어렵다는 단점이 있었습니다. 이를 해결하기 위해 제안된 것인 와서스테인 GAN 입니다. 와서스테인 GAN은 안정적인 GAN 훈련을 위해 와서스테인 손실함수를 제안하는 GAN 모델입니다. 이 와서스테인 손실함수를 사용하면 기존에 사용하던 손실함수인 이진 크로스 엔트로피 손실보다 GAN 모델의 학습결과가 더 안정적으로 수렴할 수 있다고 합니다. - 기존의 이진 크로스 엔트로피 손실(Binaray Cross Entropy Loss)는 아래와 같습니다. * y는 실제 레이블 (0 또는 1) * y_hat은 모델의 .. 2024. 6. 3. [딥러닝 with Python] 생성적 적대 신경망(GAN) / DCGAN / 레고블록 데이터 활용 [해당 포스팅은 "만들면서 배우는 생성 AI 2탄"을 참조했습니다] 생성 AI (Generative AI)에서 유명한 모델 중 하나는 생성적 적대 신경망, GAN (Generatvie Adversarial Network) 입니다. 이는 Ian Goodfellow 등이 2014년 NeurIPS 라는 학회 (Neural Information Processing Systems)에서 발표한 논문인, Generative Adversarial Nets에서 시작하였습니다. GAN은 생성자(Generative)와 판별자(Discriminator)라는 두 적대자의 싸움을 통한 생성을 해내는 네트워크가 되겠습니다. 생성자는 랜덤한 잡음을 원래 데이터셋에서 샘플링한 것처럼 보이는 샘플로 변환하고, 판별자는 샘플이 .. 2024. 6. 1. [딥러닝 with Python] SRGAN이란? / Super Resolution GAN (1/2) / SRGAN의 개념 [본 포스팅은 논문 " Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network " 와 wikidocs "한땀한땀 딥러닝 비전 백과사전"을 참고하여 작성하였습니다] 이번에 알아볼 GAN 모델은 화질을 개선시켜주는 GAN인, Super Resolution GAN입니다. 1. Image Super Resolution 이란? - Image Super Resolution(이미지 슈퍼해상도, 이하 SR)는 저해상도 이미지를 고해상도 이미지로 업스케일링하는 컴퓨터 비전 및 이미지 처리 기술을 말합니다. - 이 기술은 이미지의 세부 정보를 높이고 이미지의 시각적 품질을 향상시키는 목적으로 사용되는데요 - 이러한 SR이 사용.. 2023. 10. 5. [딥러닝 with 파이썬] GAN (Generative Adversarial Networks) / 생성적 적대 신경망 / MNIST 데이터로 구현 이번에는 GAN, 생성적 적대 신경망에 대해서 알아보겠습니다. 1. GAN이란? - GAN은 Generative Adversarial Network의 약자로, 생성적 적대 신경망으로 불립니다. - 이는 딥러닝을 기반으로 한 모델로서, 이름에서 알 수 있듯이 생성, 즉 기존에 없던 것을 만들어내는 모델입니다. - GAN의 핵심 아이디어 * GAN의 핵심 아이디어는 생성자(Generator)와 구분자(Discriminator)라는 모델을 만들어 서로 경쟁시키는 것입니다. * 생성기는 더 실제와 유사한 데이터를 생성하려고 노력하고, 구분자는 생성기가 생성한 데이터와 실제 데ㅣ터를 구분하려고 노력하는 것입니다. 이러한 경쟁을 통해 생성기는 점차 더 정교한 데이터를 생성하게 되며, 결과적으로 생성된 데이터는 실제.. 2023. 9. 25. 이전 1 2 다음 반응형