반응형 gradient descent1 [머신러닝 with 파이썬] 경사하강법(Gradient Descent) / 확률적 경사하강법(Stochastic Gradient Descent) 이번에 알아볼 것은 경사 하강법입니다. 경사하강법은 최적의 회귀식을 구하기 위해 사용되는 방법인데요. 선형 회귀의 경우 변수가 많으면 많을수록, 최소제곱법을 통해 최적의 계수(Coefficient)와 절편(Intercept)를 계산하기 시간이 오래 걸리게되는 등 많은 코스트가 발생하게 되는데요. 이를 해결하는 방법 중 하나가 경사하강법입니다. 1. 경사하강법(Gradient Descent)란? - 경사하강법의 사전적인 의미는 '점진적인 하강' 입니다. 이 뜻에서 알 수 있듯이 점진적으로 반복적인 계산을 진행하여 비용함수의 w(Weight)를 최소화 시켜가는 것을 말합니다. (여기서 w는, w0는 y 절편, w1,w2....wp는 xp의 계수를 의미합니다) - 선형회귀 모델에서는 실제 값과 예측값의 차이(.. 2023. 9. 21. 이전 1 다음 반응형