반응형 residual1 [딥러닝 with 파이썬] ResNet(잔차신경망)의 개념 (2/2) / CIFAR-10 활용해서 이미지 분류모델 구현 이번에는 저번 시간에 알아본 Residual Network의 개념을 바탕으로, Residual Block을 만들어보고 이를 쌓아간 Residual Network를 파이썬 코드로 구현해보겠습니다. 만들어진 모델은 CIFAR-10 데이터 셋을 분류하면서 그 효과를 알아보도록 하겠습니다. 1. CIFAR-10 데이터 셋이란? - CIFAR-10 이란, 32x32 크기의 컬러 이미지 60,000개로 구성된 이미지 분류 데이터셋을 말합니다. * 이때 뒤에 붙은 10은, 각 이미지의 종류(클래스)가 10개라는 것을 의미합니다. * 또한, 각 클래스의 분포는 균등한데요. 즉, 60,000개 중 1/10인 6,000개씩 균등하게 클래스 별 이미지가 데이터셋을 구축한다는 것을 의미합니다. - CIFAR-10 데이터 셋의.. 2023. 10. 1. 이전 1 다음 반응형