반응형 노멀라이징플로1 [딥러닝 with Python] 노멀라이징 플로(Normalizing Flow) [본 포스팅은 "만들면서 배우는 생성 AI 2판" 을 참조했습니다] 이번에 알아볼 모형은 노멀라이징 플로(Normalizing Flow) 입니다. 노멀라이징 플로는 기존에 알아본 변이형 오토인코더(VAE)와 유사합니다. 변이형 오토 인코더에서는 인코더를 학습하여 복잡한 분포와 샘플링이 가능한 훨씬 간단한 분포 사이를 매핑하지였고, 그런 다음 디코더를 학습하여 단순한 분포에서 복잡한 분포로 매핑하는 과정을 거쳤습니다. 따라서 단순한 분포에서 포인트 z를 샘플링하여 학습된 변환을 적용하면 새로운 데이터 포인트를 생성할 수 있었습니다. 이 과정을 확률적으로 표현해보자면 디코더 : p(xㅣz) 인코더 : q(zㅣx) (디코더의 분포인 p()의 근사치인 q를 활용함) 과 같습니다. 즉.. 2024. 6. 9. 이전 1 다음 반응형