본문 바로가기
반응형

데이터전처리2

[딥러닝 with Python] 인공신경망(Artificial Neural Network / ANN), 데이터 증강(Data Augmentation) 1. 인공신경망(Artificial Neural Network / ANN)1) 인공 신겨망의 개념 - 인공신경망이란, 의미있는 표현(Respresentation)들을 도출할 수 있는 여러 층들을 활용해 주어진 데이터로부터 Representation을 배우는 네트워크로, 사람의 뇌의 구조에 영감을 받아서 만들어진 네트워크입니다. - 깊은 층(Deep layers)들을 활용해 복잡한 표현들을 학습해낼 수 있으며 - 특히, ReLU와 같은 비선형함수들을 활용해 비선형적인 표현들까지도 학습할 수 있는 구조입니다.   2) ANN의 구성 -  어떻게 연결할 것인가? * Dense layer(일반적인 MLP) / Convolutional (Convolutional kernel 등), Recurrent(RNN 및 해.. 2024. 11. 1.
[머신러닝 with Python] 상점 신용카드 매출 예측 (DACON 문제) (1/2) 이번에는 DACON에서 진행되었던 "상점 신용카드 매출 예측" 문제를 해결해가며, 머신러닝 기법을 익혀보도록 하겠습니다.  1. 문제 소개- 해당 대회는 2019년 7월 11일부터 10월 21일까지 이어진 대회입니다. - 해당 대회는 2016년 6월 1일부터 2019년 2월 28일까지의 카드 거래 데이터를 이용해 2019년 3월 1일부터 5월 31일까지의 각 상점별 3개월의 총 매출을 예측하는 문제입니다. * 이때 중요한 것은 3,4,5월이라는 것이며, 새 학기, 새 출발을 의미하는 월들이기에 여러 변수가 발생하고 황사 등 봄철 날씨의 영향을 받을 수 있으며, 가정의 달인 5월이 포함되어 있다는 것도 중요한 변수입니다.  - 문제 유형은 시계열 회귀분석이며, 평가 척도는 MAE(Mean Absolute .. 2024. 6. 10.
반응형