반응형 머신러닝 with Python38 [머신러닝 with Python] 앙상블(Ensemble) 학습 (5) / LightGBM / 유방암(Breast Cancer) 데이터 활용 이번에 알아볼 앙상블 모델은 Light GBM입니다. Light GBM은 XGBoost가 나온 후 등장한 모델로, XGBoost의 장점은 살리고 단점은 보완된 모습이라고 볼 수 있는데요. 그렇지만, 무조건 XGBoost보다 좋다고 할 수는 없으니, 자세한 내용들을 한번 알아봅시다 1. Light GBM이란? - Light GBM이란, Light Gradient Boosting Machine의 약자로 이 역시 GBM(Gradient Boosting Machine)에 기반을 두고 있는 모델입니다. * GBM이란, Boosting 방식 중 약한 학습기를 결합해나가는 방식을 Gradient를 이용해서 모델을 개선하는 방식.(Ada Boost는 데이터에 중요한 데이터에 가중치(Weight)를 주는 방식이라는 점에.. 2023. 9. 14. [머신러닝 with Python] 앙상블(Ensemble) 학습 (4) / XGBoost 이번에 알아볼 앙상블 학습은 부스팅(Boosting) 기법 중 대표적인 방법인 XGBoost 입니다. XGBoost는 트리 기반의 앙상블 학습에서 가장 각광받고 있는 알고리즘 중 하나입니다. 유명한 캐글 경연 대회(Kaggle Contest)에서 상위를 차지한 많은 데이터 과학자가 XGBoost를 이용하면서 널리 알려졌습니다. 이는, 일반적으로 다른 머신러닝보다 뛰어난 예측 성능을 가지고 있는데요 1. XGBoost란? - XGBoost는 eXtreme Gradient Boosting의 약어로, 머신러닝과 데이터 분석에서 널리 사용되는 강력한 앙상블 학습 방법 중 하나입니다. - 특히, 트리 기반의 앙상블 학습 방법 중 하나로서 그 성능과 효율성으로 유명합니다. - XGBoost는 지난 포스팅에서 알아본.. 2023. 9. 13. [머신러닝 with Python] 앙상블(Ensemble) 학습 (3) / 부스팅(Boosting) / GBM 이번 시간에는 지난 시간에 이어서 앙상블(Ensemble) 기법에 대해서 알아보겠습니다. 이번에 알아볼 것은 부스팅 기법에 대해서 알아보겠습니다. 부스팅에도 여러 기법이 존재하지만, 이번 시간에는 가장 기본이 되는 GBM(Gradient Boosting Machine)에 대해서 알아보겠습니다. 1. 부스팅(Boosting)이란? - 부스팅이란, 여러 개의 약한 학습기(Weak Learner)를 순차적으로 학습 - 예측 하면서 잘못 예측한 데이터에 가중치 부여를 통해 오류를 개선해 나가면서 학습하는 방식을 말합니다. - 부스팅의 초창기 모델은 에이다부스트(AdaBoost)입니다. 이는, 오류 데이터에 가중치를 부여하면서 부스팅을 수행하는 대표적인 알고리즘을 말합니다. 위 그림을 설명하면 아래와 같습니다. .. 2023. 9. 12. [머신러닝 with Python] 앙상블(Ensemble) 학습 (2) / 배깅(Bagging) / 랜덤포레스트(Random Forest) / 타이타닉(titanic) 데이터 활용 지난번 포스팅에서는 앙상블 기법의 기본인 보팅(Voting)에 대해서 알아보았습니다. 이번에는 앙상블 기법 중 배깅(Bagging)에 대해서 알아보겠으며, 배깅의 대표적인 모델인 랜덤포레스트에 대해서 알아보겠습니다. 1. 배깅(Bagging)이란? - 배깅(Bagging)이란, Bootstrap Aggregating의 약어로 말 그대로 a) 부트스트랩(Bootstrap) 방법으로 원본 데이터에서 랜덤성과 중복을 허용하여 학습 샘플을 추출하고 b) 정해진 모델로 각각의 샘플에 대해서 학습한 결과를 Aggregating(종합, 집합)해서 최적의 결과를 도출하는 방법을 말합니다. - 이를 정리해서 Bagging 의 작동방식에 대해서 알아보면 아래와 같습니다. 1) 데이터의 부분 집합(Bootstrap 샘플)을.. 2023. 9. 11. 이전 1 ··· 5 6 7 8 9 10 다음 반응형