반응형 머신러닝 with Python38 [머신러닝 with Python] 선형회귀(Linear Regression) / 최소제곱법(Least Square Methods) (1) 이번에는 머신러닝의 기본 중 기본인 선형회귀에 대해서 알아보겠습니다. 여기서 "선형"(Linear)은 말 그대로 선의 형태로 결과를 도출함을 의미하며 회귀(Regression)은 특정 상태로 돌아가는 것을 의미합니다. (이는 연어가 다시 태어난 곳으로 돌아가는 것을 회귀라 말하는 것과 큰 범주에서 같은 의미라 보시면 되겠습니다.) 1. 선형회귀(Linear Regression)란? - 선형회귀는 머신러닝과 통계학에서 가장 기본적인 회귀분석 방법 중 하나로, 독립 변수와 종속 변수 간의 관계를 직선의 형태로 나타내는 것을 의미합니다. - 선형 회귀는 독립 변수가 1개인 경우를 단순선형회귀(Simple Linear Regression), 2개 이상인 경우를 다중선형회귀(Multiple)라고 부릅니다. - 이.. 2023. 9. 18. [머신러닝 with Python] Light GBM 실습 / 신용카드 사기 검출 데이터(Credit Card Fraud) 활용(2) 이번에는 지난 포스팅에 이어서 신용카드 사기 검출 데이터 (Credict Card Fraud Detection Data)를 Light GBM으로 분석해보겠습니다. [머신러닝 with Python] Light GBM 실습 / 신용카드 사기 검출 데이터(Credit Card Fraud) 활용 [머신러닝 with Python] Light GBM 실습 / 신용카드 사기 검출 데이터(Credit Card Fraud) 활용 이번 포스팅에서는 지난번에 알아봤던 Light GBM을 활용해서 실습을 진행해보겠습니다. 지난 포스팅에서는 작은 수의 데이터를 활용했기에 Light GBM의 성능향상을 크게 확인하지는 못했는데요. 이 jaylala.tistory.com 이번 포스팅에서는 지난 포스팅에서 말씀드렸던 것처럼, 1) .. 2023. 9. 17. [불균형데이터처리] 오버샘플링(Oversampling) / SMOTE 이번에 알아볼 것은 불균형 데이터(Imbalanced Data) 처리에 대해서 알아보겠습니다. 불균형 데이터는 모델 학습에 좋지 않은 영향을 미치게되어 그 모델의 신뢰성을 떨어뜨리곤 하는데요. 그렇다면, 불균형 데이터가 가지고 있는 문제는 무엇이며, 이를 해결하기 위한 방법 중 오버샘플링에 대해서 알아보겠습니다. 추가적으로, 오버샘플링 기법 중 많이 활용되는 SMOTE(Synthetic Miniority Oversampling Technique)에 대해 알아보겠습니다. 1. 불균형 데이터와 불균형 데이터의 문제점- 불균형 데이터(Imbalanced Data)란, 불균형한 클래스 분포를 가진 데이터셋을 말합니다. - 불균형한 클래스 분포란, 하나의 클래스가 다른 클래스보다 훨씬 더 많은 샘플을 가지고 있는.. 2023. 9. 16. [머신러닝 with Python] Light GBM 실습 / 신용카드 사기 검출 데이터(Credit Card Fraud) 활용 이번 포스팅에서는 지난번에 알아봤던 Light GBM을 활용해서 실습을 진행해보겠습니다. 지난 포스팅에서는 작은 수의 데이터를 활용했기에 Light GBM의 성능향상을 크게 확인하지는 못했는데요. 이번에는 좀 더 큰 데이터를 활용해서 알아보겠습니다. 이번에 사용할 데이터는 Credit Card Fraud Detection (신용카드 사기 검출) 데이터 셋입니다. 1. Credit Card Fraud Detection 데이터 설명 - 해당 데이터는 2013년 9월 유럽 카드 소지자가 신용 카드로 거래한 내역을 포함한 데이터 입니다. - 이 데이터세트는 이틀 동안 발생한 거래를 보여주며, 총 284,807건의 거래 중 492건의 사기 사건 발생을 포함하고 있습니다. * 이는 전체 거래 중 0.172%의 사기.. 2023. 9. 15. 이전 1 ··· 4 5 6 7 8 9 10 다음 반응형